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Abstract. As a consequence of QCD factorization theorems, a wide variety of inclusive and exclusive cross
sections may be formulated in terms of a universal colour dipole cross section at small x. It is well known
that for small transverse size dipoles this cross section is related to the leading-log gluon density. Using the
measured pion-proton cross section as a guide, we suggest a reasonable extrapolation of the dipole cross
section to the large transverse size region. We point out that the observed magnitude and small x rise of
the gluon density from conventional fits implies that the DGLAP approximation has a restricted region of
applicability. We found that ‘higher twist’ or unitarity corrections are required in, or close to, the HERA
kinematic region, even for small ‘perturbative’ dipoles for scattering at central impact parameters. This
means that the usual perturbative leading twist description, for moderate virtualities, 1 < Q2 < 10 GeV2,
has rather large ‘higher twist’ corrections at small x. In addition, for these virtualities, we also find sizeable
contributions from large non-perturbative dipoles (b � 0.4 fm) to F2, and also to FL. This also leads to
deviations from the standard leading twist DGLAP results, at small x and moderate Q2. Our model also
describes the low Q2 data very well without any further tuning. We generalize the Gribov unitarity limit
for the structure functions of a hadron target to account for the blackening of the interaction at central
impact parameters and to include scattering at peripheral impact parameters which dominate at extremely
large energies.

1 Introduction

In the proton rest frame, at small enough x = Q2/W 2

and Q2 � m2
p, Deep Inelastic Scattering of a virtual pho-

ton from a proton may be viewed as being factorized into
a three stage process: the formation of a state which in
general is build of quark, antiquark and gluons from the
virtual photon, the scattering of this state off the static
proton and the subsequent formation of the hadronic final
state. In QCD, the different quark-antiquark-gluon con-
figurations in the photon clearly have different interaction
strengths with a target.

For states of very small transverse spatial size, b2,
the dominant scattering state is a quark-antiquark colour
dipole state (in this simple case b is the transverse diam-
eter of the dipole). This small dipole has a small scatter-
ing probability, which has been calculated in perturbative
QCD, and at small x is related to the gluonic colour field
associated with the bound state.

The fact that such a dipole cross section appears in
a wide variety of hard small x inclusive, exclusive (e.g.
heavy vector meson production, DVCS, etc) and diffrac-
tive processes is a consequence of the feasibility of separat-
ing scales in QCD [1], and may be formulated in terms of a

universal1 dipole cross section at small x. So far, general,
relatively ad hoc, ansätze have been ascribed to this quan-
tity [2,3] and the phenomenological parameters specified
by successful fits to structure function data.

States of larger transverse size will in general have
much larger cross sections and will contain many con-
stituents. With the increase of the size of the quark-gluon
configurations the number of degrees of freedom in the
photon wavefunction is also increasing (becoming very
large in the non-perturbative QCD regime as a conse-
quence of spontaneously broken chiral symmetry in QCD).
Nevertheless, the transverse size of the scattering state
seems to be an appropriate parameter for the smooth
matching between cross sections in the soft and hard
regimes. For convenience we will continue to refer to b2
as the dipole size, and the cross section as the dipole cross
section, but these terms should be understood to refer to
the transverse size and cross section for more general scat-
tering systems for the case of large systems.

The aim of this paper is to exploit the QCD relation-
ship between the small dipole cross section (DCS) and

1 In practice, the kinematical effect of skewedness of the am-
plitude in exclusive processes leads to a partial, but controlled,
breakdown of this universality
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the gluon density in the proton to build a realistic ansatz,
monotonically increasing in b, for the DCS of all transverse
sizes. In the large b region, we match onto the measured
pion-proton cross section (at bπ = 0.65 fm), to which we
ascribe a gentle rise with energy. We suggest a smooth in-
terpolation in b for the DCS from small b (where pertur-
bative QCD is valid) up to bπ and a smooth extrapolation
for even larger transverse sizes.

Using our ansatz, we then analyze the small x struc-
ture functions, calculated in b-space which we denote F b

L

and F b
2 . In this picture, they are given by convolutions in

b2 of the square of the light-cone wavefunction of the vir-
tual photons, of the appropriate polarization state, with
the DCS. We observe that for large Q2, F b

L reproduces
approximately the same result as the standard leading-
log perturbative QCD formula. This agreement provides a
justification for the relationship between four-momentum
scales for the gluon density and transverse dipole sizes
which we assume in our ansatz (Q2 = 10/b2, cf. [4–6]).
We then produce values for F2 using our ansatz and, with-
out any fitting, find reasonable agreement with the HERA
data at small x, even for the region of low photon virtu-
ality below the input scale for QCD evolution, Q2 < Q2

0,
where our ansatz may be expected to do less well.

It is straightforward to calculate how much of the non-
perturbative region at large b contributes to the structure
functions. Since F2 is mainly governed by the transversely
polarized photon, the spin structure of the γ∗

T qq̄ vertex
leads to a considerably broader integral in b than in lon-
gitudinal case. We illustrate this well known effect graph-
ically (see Figs. 10,11,12). We find that for relatively high
Q2 = 4 − 10 GeV2 a surprisingly big contribution to the
integral (as much as 50%) is coming from this ‘danger-
ous’ large b region. While much of this non-perturbative
piece is attributable to the input distributions in F2, the
fact that it is also present in FL could indicate a size-
able ‘higher twist’ contribution for these virtualities com-
ing from the non-perturbative region. This presents a se-
vere challenge to the use of low, and x-independent, input
scales in the conventional parton density fits (e.g. the re-
cent MRST analysis [7] uses input scale Q0 = 1.0 GeV).

We note that the small x rise of the structure function
F2 observed at HERA, which may be translated into a
large and steeply-rising gluon density at small x, quickly
(after only a few gluon radiations in the ladder) leads to
a contradiction with unitarity because the DCS for small
dipoles becomes of the same size as the pion-proton cross
section (which grows much more slowly with increasing
energy). To avoid this problem, it is necessary to tame
the small x growth of the perturbative DCS. We suggest
a way of doing this which modifies our ansatz for the DCS
at small x. For small enough x, this taming appears to be
required within the weak coupling limit and hence may be
related (albeit indirectly and within a restricted range of
x) to the four-gluon to two-gluon calculations of Bartels
and collaborators (for a discussion of perturbative higher
twist effects in QCD, recent developments and references
see [9]).

The unitarity limit for the cross section of a spatially-
small colourless wave packet with a hadron target (see
Sect. 8 of [4]), and especially the theoretical analysis of the
amount of diffraction in the gluon channel predicted by
QCD [10], show that the restriction to the leading power
of 1/Q2 should break down for small enough x, possibly
within the kinematics of HERA. Moreover, it follows from
the application of Abramovsky-Gribov-Kancheli [11] cut-
ting rules that accounting for the next power in 1/Q2 (as
in [9]) can lead at most to a 25% reduction of the leading
twist result without introducing negative cross sections
[4]. Thus, it appears that the decomposition into leading
and higher twists becomes ineffective in the kinematical
region which can be achieved at the next generation of
proton accelerators (LHC) or maybe even at the edge of
the kinematics of HERA.

The use of the optical theorem for the scattering of
small size wave packets off a hadron target makes it pos-
sible to deduce a limit (which is an analog of the Froissart
limit for hadron-hadron scattering) for the amplitude in
DIS and to calculate the boundary for the applicability of
perturbative QCD in small x region [4]. It was found that
for x ≈ 10−4, the boundary is Q2 � 10 GeV2. This esti-
mate suggests a significant contribution from higher twist
effects in the kinematics of HERA for x � 10−3. A more
general aim of this paper is to visualize this problem and
to evaluate structure functions of DIS at very small x. We
show that many features of the very small x behaviour
of structure functions can be understood in terms of the
geometry of the spacetime evolution of high energy QCD
processes.

In the black limit approximation, Gribov [12] deduced
the following formulae for the unitarity limit for structure
functions of DIS2:

FT =
2πr2NQ

2

12π3

∫ δs

0

M2dM2

(M2 +Q2)2
ρ(M2) . (1)

Here rN is the radius of the nucleon and ρ is the nor-
malized spectrum of produced hadronic masses: ρ(M2) =
σ(e+e− → hadrons)/σ(e+e− → µ+µ−). The upper limit
on the M2-integral, which imposes the experimentally-
observed sharp diffractive peak: −tminBD ≈ (M2+Q2)2m2

N

s2

r2
N

3 � 1, leads to a generic logarithmic energy dependence
(BD is the usual diffractive slope parameter, mN is the
nucleon mass). Strictly speaking this formula is valid for
M2 � s, or δ � 1, satisfying the condition that the in-
teraction for a hadronic system of mass M is close to the
unitarity limit. A similar formulae has been obtained for
FL [12] and for the gluon distribution [10].

It is reasonable to ask if, and if so at which x, the black
limit will begin to be approached in Deep Inelastic Scat-
tering of a virtual photon off a proton. In other words,

2 Gribov considered scattering off a heavy nuclei for which
the black body limit appears more natural than for a nucleon.
However, provided one assumes the black limit, Gribov’s argu-
ments, and hence the formulae, will hold. For a recent discus-
sion of the black body limit in QCD for DIS off heavy nuclei
see [10,13] and references
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at which point does the cross section for the scattering of
a small colour dipole with the proton target move away
from being transparent (due to colour screening) and start
to blacken to its geometrical limit (σtot = σel + σinel =
2σinel = 2π(rN+b)2 ≈ 40−50 mb)? This question is espe-
cially acute for FL and ∂F2/∂ lnQ2 where the interaction
of spatially small configurations in the wavefunction of
the photon dominate. We aim to address this question in
a phenomenological fashion in this paper and to gener-
alize Gribov’s unitarity limit to QCD by accounting for
QCD phenomena which are neglected within the black
body limit (see Sect. 6).

This subject has a rich and long history. For the high
energy scattering of a hadron from a nuclear target many
configurations in the wave function of the fast hadron con-
tribute and it is convenient to characterize the interaction
by a distribution, P (σ), of scattering probabilities, σ, of
its constituent states instead of by the average value of
σ (this useful realization pre-dates QCD, see [14]). The
qualitative idea of two-gluon exchange as the mediator
was suggested by both Low and Nussinov [15,16]. Low
[15] also observed that the dipole cross section should be
proportional to the transverse area of the object. Miet-
tenen and Pumplin [17] later suggested that scattering
eigenstates should be identified with partonic configura-
tions in the scattering systems, implying that the scatter-
ing cross sections of particular states should be related to
parton densities in the opposing hadrons. In the modern
context, for DIS at small x and for sufficiently small b2,
σ ∝ b2αsxg(x, b2) and P (σ) follows unambiguously from
the QCD factorization theorem for hard exclusive pro-
cesses [1]. For large b2, our approach is in many respects
similar to the aligned jet model of [18] or QCD-improved
aligned jet model of [19] where the cross section of small
x processes in the non-perturbative regime is expressed in
terms of universal dipole cross section at small x, which
is matched to the soft meson-nucleon cross section (the
similarity holds despite the difference in the source of qq̄
pairs).

The paper is organized as follows. In Sect. 2 we dis-
cuss the structure function FL in b-space, introducing a
toy model for the DCS for illustrative purposes. Section 3
sets out our realistic ansatz for the DCS in detail, Sect. 4
compares and contrasts it to other models and ideas in
the literature. We make some specific, reasonable choices
concerning some of the uncertainties involved in specify-
ing the DCS. These choices are necessary in order to make
quantitative statements. However, we have also analyzed
the precise form of the DCS in detail numerically and in-
vestigated the sensitivity of our results to different choices.
This analysis will be presented in a separate paper [20].
However, at this point we merely state that the quali-
tative statements that we make about unitarity and the
influence of large dipoles in F2 at small x are robust with
respect to changes in the details. We discuss this in more
detail in Sect. 6, where we also consider the kinematic re-
gion in which the Gribov’s black limit may be reached for
scattering at central impact parameters in DIS for some
configurations in the photon wave function. We point out

that certain diffractive processes, for example exclusive
photoproduction of J/ψ, may act as useful precursors to
the onset of this new QCD regime. We conclude in Sect. 7.

2 Basic Formulae and a toy ansatz
for the dipole cross section

In this section we examine the cross section σL(x,Q2) in
b-space using a very simple toy model for the extrapola-
tion of the DCS to large b. Our aim is to familiarize the
reader with the b-space formulation of structure functions.
For clarity of presentation we employ a very simple and
unphysical ansatz for the DCS at large b. We will improve
on this toy ansatz in the next section.

It is convenient to use the impact factor (b-space) rep-
resentation first introduced by Cheng and Wu in consid-
ering high energy processes in QED. In b-space the longi-
tudinal structure function, FL(x,Q2), may be written [21,
22] in terms of the DCS convoluted with the light-cone
wavefunction of the virtual photon squared:

σL(x,Q2) = 2
∫ 1/2

0
dz

∫
d2b σ̂(b2) |ψγ,L(z, b)|2 , (2)

where

|ψL(z, b)|2 = 6
π2αe.m.

nf∑
q=1

e2qQ
2z2(1 − z)2K2

0 (εb) , (3)

in which ε2 = Q2(z(1 − z)) +m2
q and for now we set the

light quark mass, mq to zero.
For small dipoles, the DCS is governed by perturbative

QCD [23,24] (for an explicit derivation see [24]):

σ̂pqcd(b2, x) =
π2

3
b2 αs(Q̄2)xg(x, Q̄2) . (4)

We employ a phenomenological scaling ansatz Q̄2 = λ/b2
to relate transverse sizes to four-momentum scales (it is
possible to prove that this ansatz is a property of the
Fourier transform in the LO and NLO approximations but
not beyond). We also implicitly assume that the DCS is
independent of light-cone momentum sharing variable z.
This is a good approximation for the longitudinal case be-
cause the average z ∼ 1/2 dominate in the integral and
due to the z → 1− z symmetry of the wave function. For
the transverse case the end points give a larger contribu-
tion and hence this assumption is less justified.

The relationship of (2,3,4) holds to leading-log accu-
racy in Q2 (so, for consistency one is forced to use only
LO partons and αs at one loop) and involves taking the
imaginary part of the usual box and crossed box graphs.
As such this form corresponds only to the dominant in-
elastic piece of the DCS. We immediately see a practical
problem using eq.(4) in the b−integral of (2). There are
always regions in the integral, at large b, where the gluon
density is not defined and we need to decide what to do. In
particular, for fixed λ, the gluon density is not defined for
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Fig. 1. Dipole cross section in mb for fixed λ = 10, with the
toy model ansatz at large b. For an input scale of Q0 = 1.6
GeV, bQ0 = 0.39 fm marks the boundary of the perturbative
region
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Fig. 2. Longitudinal photon wavefunction squared, integrated
over z (in units of fm−2), for Q2 = 4, 10, 40 GeV2

b2 > b2Q0 = λ/Q2
0. In the usual treatment this contribu-

tion is absorbed into the initial condition of the evolution
equations.

To get started we fix λ = 10 and simply freeze αs(Q̄2)
xg(x, Q̄2) at its value at Q2

0 for b2 > b2Q0 in (4) (we refer
to this as ansatz 1). This means that the DCS retains the
canonical b2-behaviour at large b in (4), and its derivative
is discontinuous at b = bQ0. Figure 1 shows a plot of the
resultant DCS as a function of b for several values of x.

We may now examine the dominant regions of the b-
integral in eq.(2):

σL(x,Q2) =
∫ ∞

0
db IL(b, x,Q2) , (5)

where,
IL(b) = 2π b σ̂(b2)Iγ,L , (6)

in which Iγ,L is the integral of |ψL(z, b)|2 over z. Figure 2
shows Iγ,L as a function of b for three light flavours at
fixed values of Q2, it diverges at small values of b due to
the logarithmic divergence of the K0 Bessel function at
small values of its argument.

Figures 3, 4 show the integrand, IL(b), for two charac-
teristic values of Q2 = 4, 40 GeV2 using CTEQ4L gluons
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x = 10−4
x = 10−3

Q2 = 4, x = 10−2
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Fig. 3. Integrand of σL, in units of fm, for fixed λ = 10,
Q2 = 4 GeV2
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x = 10−3
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Fig. 4. Integrand of σL, in units of fm, for fixed λ = 10,
Q2 = 40 GeV2

[25]. Note in Fig. 3 one can clearly see that the region
above bQ0 ≈

√
10

1.6 ∗ 0.197 ≈ 0.4 fm (where there is a kink
due to the freezing of ansatz 1) contributes significantly
to the whole integral. In contrast, Fig. 4 shows that for
Q2 = 40 GeV2 (typical effective scale for Υ photoproduc-
tion [6]) this region is completely irrelevant. This is due
to the fact that the photon piece of the integrand Iγ,L,
multiplying the DCS, strongly weights the integrand to
progressively smaller b as Q2 increases (see Fig. 2).

As an example, let us focus on the case when Q2 = 40
GeV2 and x = 10−3. The b-integrand exhibits a strong,
slightly asymmetric peak around small b = bpeak ≈ 0.08
fm, which is slightly skewed to larger b. The relationship
Q̄2 = λ/b2, with λ = 10, implies Q2

peak ≈ 60 GeV2,
and that the typical b = btyp ≈ 0.1 fm corresponds to
Q2
typ = 40 GeV2. Clearly, for b < btyp the effective scale

will be larger than Q2. The fact that there is very little
contribution from the large b-region, for large Q2, illus-
trates QCD factorization in b-space: the sharply peaked
photon piece of the integrand ensures that only small
dipoles contribute significantly in the integral.

We will refer to the structure function FL(x,Q2) cal-
culated in b-space as F b

L. It is related to the defined cross
section in the following simple way:
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Fig. 5. The function f(Q̄2) = αsxg at fixed x for various
parton sets

FL(x,Q2) = F b
L(x,Q

2, λ) =
Q2

4π2αe.m.
σL(x,Q2, λ) (7)

where we have chosen to write the dependence on λ explic-
itly. Why have we chosen λ = 10? Lambda should reflect
the typical size of contributing dipoles. It may be calcu-
lated by defining an average b in the integrand for FL (in
[4–6] a median average of the integral was used). What-
ever the precise procedure used for defining the average,
a value of λ ≈ 10 comes out for large enough photon vir-
tuality Q2. Roughly speaking λ =<b>2 Q2, so that when
b =<b> the gluon and αs are sampled at Q2 in (4) as in
the usual leading-log in Q2 perturbative QCD formula for
FL (see (8) later).

In fact F b
L has a rather weak dependence on λ for large

Q2, this fact reflects the renormalization group invariance
of QCD. We illustrate this in Fig. 5 by plotting αsxg as a
function of its argument at fixed x = 10−3 for several LO
and NLO parton sets [7,25]. A similar behaviour is ob-
served at other small values of x < 10−2. For large Q̄2 it
is rather a weak function, and our λ-ansatz translates this
into a weak dependence on b. This in turn implies that
the canonical σ̂pqcd ∝ b2 αs(λ2/b2) xg(x, b2) ∝ b2 holds
approximately for small enough dipoles. For x � 10−3,
αsxg has positive scaling violations implying an effective
behaviour slightly softer than b2 from QCD at sufficiently
small x (the effective Q̄2-power, γ(x, Q̄2) � 0.1 in Fig. 5,
for large Q̄2 � 20 GeV2). The peak in b evident in Fig. 4
implies that αsxg is sampled dominantly only in a small
range of Q̄2 in Fig. 5. For small dipoles a reasonable change
in λ corresponds to a shift of this dominant region within
the fairly flat part of the curve. Hence, as we have checked
explicitly, for large Q2 FL is insensitive to the precise
choice of λ.

However, for smaller scales αsxg has a much stronger
dependence on Q̄2 which tames this linear dependence on
b2 into something much softer. This fact is apparent in
the shape of the curves in Fig. 1, for dipole sizes corre-
sponding to the region of Q2

0 < Q̄2 ≤ 10 GeV2, σ̂pqcd
deviates considerably from the b2 behaviour apparent for
small (b � bQ0) and large (b > bQ0) dipoles in our toy
ansatz. In [20], we investigate this question of interrelation
of these scales in more detail. Finally, we note in passing
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Fig. 6. Integrand of F q
L versus x

′
/x for various Q2 using

CTEQ4L gluons

that αsxg, plotted in Fig. 5, has a comparable numerical
value and shape for both LO and NLO gluons. Since the
dipole cross section is proportional to this quantity for
small b, all statements that we make about the size of the
DCS using LO gluon densities also hold at NLO.

3 A realistic ansatz for the DCS

At small x, because the gluon density dominates over the
quark density, to a good approximation the LO perturba-
tive QCD formula for FL(x,Q2) which we denote generi-
cally as F q

L is:

FL(x,Q2) =
4αs(Q2)TR

2π
Σ2nf

q=1e
2
q

∫ 1

x

dx′x′g
(
x′, Q2)

× x
2

x′3

(
1 − x

x′
)
. (8)

This conventional expression for FL(x,Q2) involves an in-
tegral over the gluon momentum fraction x

′
, of the pro-

ton’s momentum p, which feeds into the quark box. In
Fig. 6 we plot the integrand of the above formula versus
x′/x, at x = 10−3, for various Q2 values. The gluon is
sampled at a range of values of x

′
> x with the integrand,

IqL(x
′/x), peaked around x′

peak ≈ 1.3x, and skewed to
x′ > xpeak due to the factor multiplying the rising gluon
density. We define an average, <x>, to be that x′ up to
which one must integrate to obtain half of the full integral:
it turns out this is always around x

′
=<x>≈ 1.75 x for

a wide range of external x,Q2.
Momentum conservation for the fusion of a gluon with

a photon, of momentum q, to produce the quark-antiquark
pair, of mass M2

qq̄, gives

(x′p+ q)2 =M2
qq̄ =

k2
t +m

2
q

z(1 − z)
≥ 4m2

q +
k2
t

z(1 − z) ∝ 1
b2
. (9)

The inequality in the second line is satisfied for a non-zero
quark mass, mq, when z = 0.5. In fact the approximation
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1/(z(1 − z)) ≈ 4 holds over a reasonable wide range of z
values. So, taking finite quark masses into account implies
a minimum value for x

′
of x

′
min = x (1 + 4m2

q/Q
2). To

account for the important role at large b of confinement
and spontaneously broken chiral symmetry we choose con-
stituent quark masses. With this in mind, for our new
ansatz we choose to sample the gluon density in (4) at

x′ = x
′
min

(
1 + 0.75

<b>2

b2

)
. (10)

This choice guarantees that for the average b2, x′ =<x>,
but allows x

′
(b2) to vary according to the inverse of the

transverse size of the dipoles. Kinematically, a large mass
dipole requires a gluon carrying a greater than average
momentum fraction to produce it and the ansatz of (10)
is designed to reflect this. In contrast, for very large, small
mass dipolesM2

qq̄ � Q2, and the formula gives x′ ≈ x′
min,

which is approximately x only for light quarks. The aver-
age b is <b>2= λ/(Q2+4m2

q), in agreement with the def-
inition of λ =<b>2 Q2 in the DIS region, Q2 � 4m2

q, but
is infra-red safe in the photoproduction region Q2 � 4m2

q.
We also have a constraint on the DCS at large b from

the experimental determination of the pion-proton cross
section, σ̂π,N = 23.78 mb [26]. The DCS should be close
to this at transverse separations which correspond to the
diameter of the pion (dπ ≈ 0.65 fm). For rather large
x ≈ 10−2 the magnitude of the DCS at the interface to the
non-perturbative region is considerably smaller (σ̂pqcd(x =
10−2, b2Q0) ≈ 6 mb) than this.

The intermediate region bQ0 < b < bπ is extremely
interesting and very poorly understood, so some modeling
is required. It is in this region that strong confinement and
effects of spontaneously broken chiral symmetry set in to
produce the bound state pion. Clearly the dynamics in this
region will include strong colour fields and the creation of
light sea pairs from the vacuum. As such, it is no longer
reasonable to think of b as corresponding to the transverse
size of a dipole. It is better to think of it as corresponding
to the typical transverse radius of the complicated non-
perturbative system, which in general will contain many
constituents.

The minimum requirement of a interpolating function,
σ̂I for the DCS is that it matches appropriately at b = bQ0
and b = bπ:

σ̂I(x, b2) =
[
σπp(x, b2π) − σ̂pqcd(b2Q0)

]

×H(b2) + σ̂pqcd(b
2
Q0) , (11)

with H(b2Q0) = 0 and H(b2π) = 1. On geometrical grounds,
we also choose to only consider functions which are mono-
tonically increasing as a function of b. A very simple func-
tion which satisfies these requirements is

H1(b2) =
(b2 − b2Q0)
(b2π − b2Q0)

, (12)

which has a linear growth in b2, even for b ≈ bπ. To im-
pose a flatter behaviour in this region and a fairly smooth

matching close to b ≈ bQ0 we choose the following expo-
nential matching

H(b2) =
e

(e− 1)
[
1 − exp(−H1(b2))

]
, (13)

which retains the linear growth in b2 close to bQ0.
The pion-proton cross sections is observed to rise

slowly as the energy increases. In order to take this into
account we impose a slow growth with increasing energy,
consistent with a Donnachie-Landshoff soft Pomeron [27],
in our boundary condition at b = bπ:

σπ,N (bπ, x) = 23.78
(x0

x

)0.08
mb , (14)

and choose x0 = 0.01. This behaviour in x is designed
to mimic the observed (W 2/W 2

0 )
0.08 behaviour in energy.

The precise value of 23.78 mb is taken from the Fermilab
data [26] from pion-proton scattering and corresponds to
W 2

0 = 400 GeV2.
As x decreases the magnitude of the DCS for small

b2 increases much more rapidly with energy than this
soft piece, as a result of the steeply rising gluon density.
For leading-log gluons at small enough x, if unchecked,
it can even become greater than σπ,N (bπ, x) for pertur-
bative b < bQ0. This is clearly nonsensical, some taming
of this rapid growth must occur before this can happen.
Since the gluon density form of (4) really represents only
the inelastic part of the dipole cross section, as it becomes
comparable to σπ,N we need to include the elastic part
of the DCS too, which hitherto was implicitly assumed to
be negligible. In the limit of very large energy the Frois-
sart bound indicates that the elastic piece should not ex-
ceed the inelastic piece. On this basis we really should
worry about the applicability of our perturbative QCD
formula when the DCS is about 50% of the pion-proton
cross section. The absolute upper bound for the inelastic
small dipole-nucleon interaction is 8πB2g/(1 + η2) where
B2g ∼ 4−5 GeV−2 is the slope of the t-dependence of the
two-gluon form factor of the nucleon, as measured in hard
exclusive diffractive processes at HERA, and η is the ra-
tio of real and imaginary parts of the scattering amplitude
[4,10]. This bound is slightly weaker than the transition
point which we assume, but pushing all the way to the
absolute limit appears unrealistic.

In our computer code we test σ̂pqcd (x, b2) to see if the
equality is reached in the perturbative region b = bcrit <
bQ0, where bcrit is defined implicitly by

σ̂(x, b2crit) =
π2b2crit

3
αs(Q2

crit)x
′g(x′, Q2

crit)

=
σ(x, b2π)

2
(15)

with Q2
crit = λ/b

2
crit and x

′ is given by (10). If so, we use
a new interpolation in the region bcrit < b < bπ:

σ̂I(b2, x) =
(

b2

b2 + a2

)n

σ0 . (16)

Matching at b = bπ sets the value of
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σ0(x) = σπ,N (bπ, x)
(
b2π + a2

b2π

)n

. (17)

The two remaining parameters, a, n, are chosen to provide
a fairly smooth matching at b = bcrit. To achieve this we
perform a three parameter fit of exactly the same form
as (16) for a given x in the region just below bcrit, us-
ing MINUIT [28]. We then take the effective power, nfit,
from this fit, so that the interpolating ansatz of (16) has
approximately the correct power in b2 at the boundary.

The last remaining free parameter, the scale a, is then
specified by the matching at b = bcrit:

a2 =
b2crit (1 − (0.5)nfit)(
b2crit

b2π
(0.5)nfit − 1

) . (18)

This ensures a fairly smooth behaviour in b2 which takes
into account the effective behaviour of αs(Q̄2)xg(x, Q̄2)
close to bcrit as discussed earlier (see Fig. 5).

For very large dipole sizes, b > bπ, we simply impose
a universal residual slow growth, linked to the value at
b = bπ of the form

σ̂I
(
b2 > b2π

)
= σ

(
b2π, x

) 1.5 b2

(b2 + b2π/2)
. (19)

Numerically this very large b region is totally irrelevant
for the calculation of DIS structure functions since it is
killed by the exponential fall-off of the photon part of the
integrand due to the K0,K1 Bessel functions (in practice,
for moderate Q2 we integrate up to b = 1.0 fm, for smaller
Q2 < 3.0 GeV2 we extend this out to 2.0 fm).

Let us briefly summarize our realistic ansatz. Assum-
ing the universal scaling relation λ = b2Q̄2 restricts the
region of applicability of any perturbative QCD dipole
formula to transverse sizes smaller than bQ0, which corre-
sponds to the input scale of parton densities in b-space.
For small, but not too small x, we use the perturbative
QCD formula of (4) with the gluon sampled at x

′
(see

(10)) in the region 0 < b < bQ0. Between bQ0 ≈ 0.4 fm
and bπ = 0.65 fm we use the interpolating formula of (11),
employing the exponential matching of (13). For smaller
x, we recognize that σ̂pqcd gets too large within the pertur-
bative region b < bQ0 at some point, bcrit, defined by (15).
At this point, we switch from the standard form and use
the interpolating form of eqs.(16,17,18), which tames the
rapid growth and interpolates in the region bcrit < b < bπ.

In both cases, our ansatz matches onto the pion-proton
cross section of (14), at b = bπ = 0.65 fm, which is allowed
a slow Donnachie-Landshoff type energy growth. For b >
bπ we use the slow increase given in (19). In Fig. 7 we show
our new ansatz for the DCS as a function of x. Note, we
use the ansatz for both heavy and light flavours. The NA38
collaboration [29] recently suggested σψ′N ≈ 24±5 mb, on
the basis of an observed deficit in the number of ψ

′
decays

to dimuons in Sulphur-Uranium collisions relative to well
established trends in proton-nucleus collisions. The fact
that the large cc̄(2S) bound state has a large interaction
cross section with the nucleon in these nuclear collisions,
as predicted in [30], is some justification for our flavour

x = 10−5, bcrit = 0.175fm
x = 10−4, bcrit = 0.26 fm

x = 10−3, bcrit > bQ0

σπ,P (bπ, x = 10−5) = 41.32 mb
σπ,P (bπ, x = 10−4) = 34.37 mb
σπ,P (bπ, x = 10−3) = 28.59 mb

x0 = 0.01
bQ0 = 0.39 fm
bπ = 0.65 fm

b (fm)

σ̂
(b

)
(m

b)
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Fig. 7. Dipole cross section in mb for fixed λ = 10, with
the realistic ansatz at large b. For small enough x unitarity
corrections are included
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Fig. 8. Dipole cross section in mb for Wusthoff-Golec-Biernat
saturation model [2]

blind choice for the DCS in the non-perturbative region
(b ∼ 0.6 fm).

4 Comparison with other models
for the dipole cross section

The unitarity correction at small x, discussed above, is
clearly beyond the usual DGLAP leading twist analysis
and is similar in spirit to the saturating ansatz of Wüsthoff
and Golec-Biernat [2]:

σ̂
(
x, b2

)
= σ0

(
1 − exp

[
−b2Q2

0/4 (x/x0)
λ
])
. (20)

A three parameter fit to the HERA data on DIS with
x < 0.01, excluding charm and assuming Q0 = 1.0 GeV,
produced the following values σ0 = 23.03 mb, x0 = 0.0003,
λ = 0.288 and a reasonable χ2. We are encouraged to note
that the “saturation” cross section coming from this fit
is considerably below the lowest value of the black limit
(σblacktot = 2πr2N ≈ 40 mb).

The resultant DCS from (20) is plotted in Fig. 8. A
comparison of this figure with our model for σ in Fig. 7
is shown in Fig. 9 which shows the ratio of our σ divided
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Fig. 9. Ratio of our dipole cross section with the Wusthoff-
Golec-Biernat saturation model [2]

by the Wusthoff Golec-Biernat form, σWGB . It reveals a
considerably different b-shape, normalization and energy
dependence. Focusing on exclusive processes, which are
particularly sensitive to the small b region in which the
models differ most, will help to distinguish between them.
Having emphasized the contrasts, it is worth pointing out
that the two models share some gross features: an approxi-
mate b2 behaviour and strong rise with x at small b, tamed
to something much softer at large b. Indeed, the critical
point at which we apply our unitarity corrections, bcrit,
clearly shifts to smaller b as x decreases, as a result of the
rising gluon density. This is similar to the critical line of
[2].

The form of (20) was clearly chosen with simplicity in
mind and is indeed impressively economical in its number
of parameters. We recognize this motivation and so do
not wish to criticize it too strongly. However, we feel this
simple form misses several known crucial features which
our ansatz includes (leading to the differences manifest in
Fig. 9). Firstly, the small dipole form is known from per-
turbative QCD (having specified the relationship between
b and Q2, see (4)). The fact that the gluon density may
be taken from the global fits allows a careful study of the
deviation from a simple b2 behaviour inherent in (20). As
a result the difference between our σ and σWGB for the
perturbative region of b ≤ 0.4 fm is large and strongly en-
ergy dependent (cf. Fig. 9). Using the fitted gluon density
also allows the precise behaviour in x to be incorporated
more correctly than a single global power implied by (20).
Secondly, it is well established experimentally that soft
dipole cross section increases slowly with energy. This may
be modeled with a small power as in (14) or with a log-
arithm according to theoretical prejudice. However, (20)
has a flat behaviour in energy for large dipoles, leading to
a rather large and energy dependent difference for large
b. Thirdly, as discussed above, the region where unitar-
ity has to be included is known from the requirement of
smallness of the elastic cross section as compared to the
total cross section.

The eikonal form assumed in [2], i.e. (20), was inspired
by an earlier work by Gotsman, Levin and Maor [31] (see
also [32]) in which the hard cross section σinelpqcd ∝ αsxg

[23] explicitly appears in the eikonal3. At the same time
the eikonal approximation has problems in accounting for
the generic properties of QCD. In particular, the eikonal
approximation assumes conservation of bare particles in
the wave function of the photon despite the fact that op-
erators of Lorentz boosts do not commute with the oper-
ator of the number of bare particles. A related problem
is that the eikonal approximation neglects the energy lost
by an energetic particle in the inelastic collisions. Hence,
the taming of the increase of parton distribution by this
method strongly overestimates the energy released in in-
elastic collisions.

The recent paper of these authors with Naftali [33],
appears to be somewhat orthogonal to their earlier works
[31,32] in that the problem of σinelpqcd getting too large is
not addressed. They discuss different regions in the mass
of the scattering state, in contrast to dipole sizes (cf.
(1)). Roughly speaking, large masses correspond to small
dipoles (at least for the lowest qq̄ Fock state) and are re-
lated to the unintegrated gluon density in this hard con-
tribution. The small mass region is modeled using a Regge
analysis. As we have discussed in the current paper (see
also [34]), they also stressed the interplay of short and
long distance physics to all processes at small x. This cor-
respondence between masses and regions in transverse size
is known to break down for higher order Fock states due
to the possibility of large size and large mass aligned jet
type configurations (see e.g. [35]).

An important point of our analysis, which has been
stressed elsewhere including in [4,31,32], is that it is the
magnitude and increase of the gluon density within the
DGLAP approximation as x decreases that leads to con-
flict with unitarity. However, in contrast to [2,31,32] we
predict that structure functions continue to increase sig-
nificantly with energy above the unitarity limit as a result
of important role of peripheral collisions. This is because
unitarity only restricts the contribution to structure func-
tions related to the collisions at central impact parameters
(see Sect. 6).

Forshaw, Kerley and Shaw [3] propose a general, rather
ad hoc, ansatz for the DCS, which they stress is modeled
as a function of b2 and W 2 (rather than x), with a soft
Pomeron and a hard Pomeron piece:

σ̂(W 2, b) = a
P 2
s (b)

1 + P 2
s (b)

(b2W 2)λs

+b2P 2
h (b) exp(−ν2

hb)(b
2W 2)λh , (21)

where Ps(b) and Ph(b) are polynomials in b. They suc-
cessfully fit this general form to the data. From the point
of view of very large dipoles (of the order of a meson size)
one may think that the DCS should be a function of W 2

rather than x = Q2/W 2, since it should just depend on
the energy of the collision (here there is no hard scale with
which to specify an ‘x’). However the presence of a finite x

3 However, we remind the reader that if σinel
pqcd is large enough

to require eikonalization then σel
pqcd will also be so large that in

the black limit one has σtot =
∫

d2ρ(2− 2 exp(−σtot
pqcdT (ρ)/2))

within the eikonal approximation
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imposes off-forward, or skewed, kinematics which cannot
be ignored even in the limit of soft interactions. One can
see this for example in the Aligned Jet Model where the
propagator for a transition from negative mass-squared
(−Q2) to positive mass-squared of the qq̄ pair is present
for DIS. Hence, in order to achieve the observed approx-
imate Bjorken scaling of F2 it was necessary to model
the DCS in (21) as a function of b2W 2, rather than W 2

alone. It is interesting to note that with our ansatz for
the relationship between small dipole sizes and hard four-
momentum scales, this reduces to an x

′
-dependence for

small dipoles (b2W 2)n → (λW 2/Q2)n ∝ x−n. For small
dipoles, in our approach, there is an identifiable set of
diagrams which contain the fusion of a gluon with the vir-
tual photon, hence the DCS can and must depend on the
momentum fraction x

′
of the incoming gluon. How, and

whether, this x−dependence becomes a W 2 dependence
for large dipoles, and whether it is possible to define the
DCS as a unique function over the whole range in b, are
interesting and open questions which deserve further con-
sideration. We also note that the DCS which results from
the fit of eq.(21), has the rather unattractive feature at
large (fixed) energies that it is not a monotonically in-
creasing function of b, it contains a minimum in the re-
gion b ≈ 0.6 fm for s = 105 GeV2 (see Fig. 6,7 of [3]). By
design, our ansatz specifically avoids this, for fixed x.

From a radically different point of view, we have ar-
rived at a broadly similar picture to Donnachie and Land-
shoff’s two Pomeron model [36], with the soft Pomeron
becoming of increasing less importance as the hardness
of the process increases (commonly called ‘higher twist’).
The approximate scaling observed in αsxg in Fig. 5 ex-
plains why a single power in energy will work fairly well
for the hard piece. At the same time there are important
differences, in our picture for intermediate b the power is
different from either of the Pomeron powers of [36] and
description of it by the sum of two powers is only approx-
imate and looks rather artificial from the point of view of
the dipole picture. Even more importantly, due to unitar-
ity effects and the important role of peripheral collisions
we expect a change of the power at higher energies making
it closer to the soft Pomeron case. For example, in exclu-
sive production of J/ψ the logic of our ansatz suggests that
the large power observed at HERA will become tamed to
a smaller power at even higher energies due to unitarity
corrections. In contrast, in the two Pomeron picture of [36]
the harder Pomeron would completely dominate at higher
energies.

5 Testing our ansatz:
comparison with structure functions

In Sect. 2, we argued that for very large Q2 the integrand
in σL is strongly peaked in the perturbative region and
has very little influence from non-perturbative effects in
the large b region. If this is really the case, and our ansatz
is reasonable, we should be able to reproduce values for the
structure function FL(x,Q2) which are in close agreement

Table 1. A comparison of the b-space formula, F b
L, using

our ansatz for the DCS, with the standard perturbative QCD
result, F q

L, for F
nf =3
L (x, Q2) as a function of x for Q2 =

4, 10, 45 GeV2. We used CTEQ4L gluons

x F q
L F b

L % diff. = 100 × RL(%)
CTEQ4L (F q

L − F b
L)/F q

L

Q2 = 45

10−2 0.0638 0.0716 -12.3 5.1
10−3 0.224 0.225 -0.3 2.4
10−4 0.620 0.594 4.1 1.3
10−5 1.53 1.40 8.2 0.7

Q2 = 10

10−2 0.0704 0.0750 -6.53 26.2
10−3 0.204 0.187 8.46 15.2
10−4 0.493 0.427 13.4 9.87
10−5 1.10 0.869 21.1 6.38

Q2 = 4

10−2 0.0714 0.0759 -6.32 54.3
10−3 0.174 0.153 12.0 37.5
10−4 0.378 0.307 18.6 26.9
10−5 0.787 0.558 29.1 19.4

with the standard leading-log perturbative QCD formula
of (8). As Q2 decreases towards the input scale Q2

0 we
might expect the two formula to deviate since the large b
region is implicitly excluded from the leading twist per-
turbative QCD formula. For consistency we use the same
parton set in each and to avoid the complexities of treat-
ing massive charm, in this theoretical cross check, we run
with only three light flavours of quarks (we also set the
three light quark masses to zero).

Table 1 reveals the excellent agreement of the b-space
formula with perturbative QCD at large Q2 and also dis-
plays the deviation of the two formula for low Q2. Also
shown, in the last column is the percentage, RL(%), of
the b-integral coming from the non-perturbative region
above b > bQ0. As expected this decreases with increasing
Q2. We used CTEQ4L parton distributions which have an
input scale of Q2

0 = 2.56 GeV2.
Having found reasonable agreement with this theoret-

ical cross check of our ansatz for the DCS, we proceed to
calculate its predictions for F2(x,Q2), which we denote,
F b

2 . In order to calculate this we need to know the wave-
function squared for transverse photons:

|ψT (z, b)|2 =
3
2π2αe.m.

nf∑
q=1

e2q
[(
z2 + (1 − z)2) ε2K2

1 (εb)

+m2
qK

2
0 (εb)

]
, (22)

where ε2 = Q2(z(1 − z)) +m2
q. From now on we will use

mq = 300 MeV, for u, d, s and mc = 1.5 GeV, for both the
longitudinal and transversely polarized photon wavefunc-
tions. The small light quark constituent mass only affects
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Fig. 10. The weight given to dipole cross section by the trans-
versely polarized photon as a function of transverse size

the structure function seriously in the case of very small
Q2 < Q2

0. It acts as a regulator for the divergence of the
Bessel function in the photoproduction limit Q2 → 0.

We are interested in how |ψT |2, integrated over z,
weights the dipole cross section in

σT (x,Q2) = 2π 2
∫ 1/2

0
dz

∫ ∞

0
bdb σ̂(b2) |ψγ,T (z, b)|2

=
∫ ∞

0
dbIT (b, x,Q2) , (23)

where IT (b) = 2πb σ̂ Iγ,T and

Iγ,T (b) = 2
∫ 1/2

0
dz

3αe.m
∑nf

q=1 e
2
q

2π2

[(
z2 + (1 − z)2)

×ε2K2
1 (εb) +m

2
qK

2
0 (εb)

]
. (24)

This integrand, multiplied by the Jacobian factor 2πb,
is shown in Fig. 10 as a function of b for three light flavours.
At small b, K1(a) ∝ 1/a so Iγ,T is approximately inde-
pendent of Q2 and the residual 1/b2, apparent in Fig. 10
cancels the b2 in (4). As a result, in the perturbative re-
gion the transverse cross section, which dominates F2, is
particularly sensitive to the effective behaviour of αsxg in
b. For comparison, Fig. 11 shows 2πb Iγ,L. In contrast, in
the longitudinal case K0(a) ∝ − ln(a) at small a, leaving
almost the full power of Q2 evident in (3), and effects the
approximate b2-behaviour of σ̂ very little.

In order to make a comparison of the relative weight
that the transverse photon gives to the DCS, we plot the
ratio of Iγ,T and Iγ,L in Fig. 12. This plot clearly shows
that the transverse photon provides support over a much
broader range in b, i.e. both at smaller and larger b, than
the longitudinal photon. This is especially true at high
Q2 and leads to a very broadly peaked integrand IT . The
peak corresponds approximately to Q2 and smaller dipoles
b < bpeak strictly speaking lie outside of the usual leading-
log approximation (which result from logarithmic integra-
tions in the perturbative QCD ladder in kt up to Q2; the
variable b is conjugate to the kt in the upper quark loop
of the ladder in this formulation).
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b (fm)

2π
b
∫ d

z|Ψ
γ

∗
L

|2
(f

m
−1

)

0.50.450.40.350.30.250.20.150.10.050

0.03

0.025

0.02

0.015

0.01

0.005

0

Fig. 11. The weight given to dipole cross section by the lon-
gitudinally polarized photon as a function of transverse size
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Fig. 12. The ratio of weights, transverse divided by longitu-
dinal, given to the dipole cross section for the two different
photon polarizations. Three light flavours are included

The fact that the transverse photon wavefunction
squared is so broad in b-space reflects Gribov’s paradox (or
Bjorken’s aligned jet model). At large Q2 the large dipoles
are being produced by asymmetric splittings (z � 1).
While such splittings are unlikely, the large dipoles they
produce interact with a large hadronic cross section. The
detailed link between large dipoles and asymmetric split-
tings, and the possibility of a z-dependence in σ̂, requires
further study. Figures 13, 14 compare the resultant in-
tegrands for the transverse and longitudinal photons for
large (Q2 = 40 GeV2) and moderate (Q2 = 4 GeV2) val-
ues of the photon virtuality, respectively. For the latter
case, one can clearly seen the unitarity corrections starting
to affect the integrands at the smallest values of x. The rel-
ative contributions of perturbative and non-perturbative
regions are very clear from these figures.

To calculate F b(nf =4)
2 we use

F2(x,Q2) = FT + FL =
Q2

4π2αe.m
(σT + σL) (25)
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Fig. 13. Integrands in b-space (units mb fm−1) for Q2 = 40
GeV2

with σT defined precisely analogously to σL. We also at-
tempt to include threshold effects, albeit in a rather crude
way, by imposing that the momentum fraction of the gluon
must be sufficient to generate the charm quark pair, us-
ing a theta function Θ(x′ − (Q2 +M2

cc)/W
2). This con-

dition is included in our ansatz of (10) and ensures that
x′ > x

′
min = x (1 + 4m2

c/Q
2) for any value of b. This pro-

cedure leads to approximately the correct ratio of charm
in F2.

In Fig. 15 we compare our results (solid curves) with
the 1994 HERA data [37], [38] for the larger Q2 > Q2

0 =
2.56 GeV2 data. Our physical ansatz is in reasonable
agreement with the data at small x for moderate values of
Q2. This gives us faith in some of the choices we made in
specifying our ansatz for the dipole cross section. Recall
that no fitting or minimization procedure has been applied
to tune the available parameters to give an excellent fit,
although of course it would be possible to do so.

In addition, in Fig. 16 for completeness we show an ex-
plicit comparison of our model with the lower Q2 < Q2

0
ZEUS BPC [39,40] and a selection of the ZEUS SVX [41]
data. We could equally have chosen to compare to the low
Q2 H1 data from 1995 [42], which is binned differently in
Q2. It is interesting to note that our model does a reason-
ably good job in this low virtuality region too, which is
most sensitive to our ansatz for the DCS at large b. Again
recall that no fitting procedure has been applied.
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Fig. 14. Integrands in b-space (units mb fm−1) for Q2 = 4
GeV2

More recent H1 data, over a wider kinematic range
than in [42] was recently presented [43]. Unfortunately
the data tables were not publicly available to include in
our plots.

Note that in this region of small Q2 we clearly can-
not use DGLAP evolution. At the same time, due to the
possibility of separating contributions of small transverse
distances in the wave function of the virtual photon with
small virtuality we can estimate with rather small uncer-
tainties the short-distance contribution which leads to a
fast increase of the cross section with W 2 at fixed Q2.

6 The onset of the new QCD regime

The small x dipole formulation of high energy processes is
attractive in that the contributions from perturbative and
non-perturbative regions become very clear. We have ex-
trapolated the perturbative QCD formula for small dipoles
into the non-perturbative regime, using the pion-proton
cross section as a guide. For very small x it was necessary
to tame the growth of the small dipoles to avoid conflict
with unitarity.

In our ansatz, small dipoles are governed by the steeply
rising gluon density. In principle all high energy processes
contain perturbative and non-perturbative contributions,
which rise quickly and slowly with increasing energy, re-



652 M. McDermott et al.: Unitarity and the QCD-improved dipole picture

Q2 = 3.5
0

0.5

1

1.5

2

2.5

Q2 = 4.5

0

0.5

1

1.5

2

2.5

Q2 = 5

0

0.5

1

1.5

2

2.5

Q2 = 6.5

0

0.5

1

1.5

2

2.5

Q2 = 8.5

0

0.5

1

1.5

2

2.5

Q2 = 10

0

0.5

1

1.5

2

2.5

10
-5

10
-4

10
-3

Q2 = 12 Q2 = 15

Q2 = 18 Q2 = 20 Q2 = 22 Q2 = 25

10
-5

10
-4

10
-3

Q2 = 27 Q2 = 35 Q2 = 45 Q2 = 60

Q2 = 70 Q2 = 90

10
-5

10
-4

10
-3

Q2 = 120 Q2 = 150

Q2 = 200 Q2 = 250 Q2 = 350

10
-5

10
-4

10
-3

x

F2 (x,Q2) Comparison at intermediate Q2

Fig. 15. A comparison of the re-
sults with the 1994 data [37], [38],
without any fitting procedures

spectively. Having specified the dipole cross section, the
light-cone wavefunctions of the external particles pick out
a given region in b according to their hardness. A reanaly-
sis of fairly soft exclusive processes, (e.g. electroproduction
of ρ-mesons, or DVCS) will be crucial in constraining the
large dipole region further.

So, where does this leave the conventional DGLAP
analyses of inclusive structure functions which always pro-
duce qualitative good fits to the data? In our opinion,
the linear nature of the evolution equations mean that
the global fits are almost guaranteed to work. When new

data comes out it is always possible to fine tune the func-
tional form of the input, and the many input parameters
at the starting scale, to reproduce the slow logarithmic
changes in Q2 in F2. However, when the resulting quark
and gluon densities produce apparent contradictions it is
surely time to extend the conventional picture to include
other (higher twist) contributions. This is of course very
far from straightforward in practice although some in-
teresting attempts have been made [9,44]. A good way
to establish experimentally the important role of higher
twist effects is to measure diffraction in the gluon channel
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Fig. 16. A comparison of the re-
sults with the ZEUS data at low Q2,
without any fitting procedures

and/or diffractive charm and beauty production in DIS
(see [10] for discussion).

As well as discussing the transverse size of the scat-
tering system it is also useful, and usual, to discuss the
typical impact parameter, ρ, of a given configuration on
the target (i.e. the conjugate variable to the transverse
momentum transfer qt : t = −q2). Although it is stan-
dard to discuss the impact parameter representation of
scattering process (see e.g. the textbook by Eden [45]),
we have noticed that there is often a confusion between
ρ and transverse size b in recent literature. Some useful
explicit formulae in this regard are given in the recent pa-

per by Gieseke and Qiao [46]. For particular processes the
typical impact parameters are usually expressed in terms
of the slope parameter B which specifies the t-dependence
(assumed to be exponential).

In hard exclusive diffractive processes in DIS, within
the kinematics of HERA, the interaction is typically domi-
nated by scattering at central impact parameters: σ(ρ2) ∝
exp(−ρ2/2B), where B ≈ 4.5GeV−2. Thus, very approxi-
mately, for these processes ρ ≈ √

B ∼ 0.6 fm which is sig-
nificantly less than the electromagnetic quadratic radius
of a nucleon rtrans.N ≈ √

2r2N/3 ≈ 0.84 fm. In contrast,
in hadron-hadron collisions peripheral (large ρ) interac-
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tions play an important, and perhaps dominant, role. For
example, an analysis of elastic proton-proton collisions at
Fermilab collider energy range shows that B ≈ 17GeV−2

and therefore peripheral ρ ≈ √
2B ∼ 1.2 fm are essential

in the total cross section. On this basis we can conclude
that the spacetime development initiated by a spatially
small wave packet of quarks and gluons in DIS is differ-
ent at the achieved energy ranges from the pattern known
from proton-proton collisions, where soft Pomeron physics
dominates.

From the analysis of partial waves in high energy
(
√
s ≥ 50 GeV) elastic pp̄ collisions we know that non-

perturbative interactions at central impact parameters are
close to the black limit and that peripheral collisions play a
crucial role. The distinctive feature of DIS, in the kinemat-
ics of HERA, which we understand from the above anal-
ysis of slopes, is that the scattering at central impact pa-
rameters dominates and peripheral scattering, where the
interaction is far from black in a wide range of small x, is a
correction. The advantage of considering the black regime
in DIS is that it is possible to make a complete evalua-
tion of structure functions of a proton, (at least at not too
large Q2 ≈ 1 GeV2, i.e. in the regime where nonpertur-
bative QCD physics dominates in the structure functions)
because in this limit all configurations interact with the
same cross section. Since geometrically, large transverse
size dipoles are more likely to correspond to large impact
parameters, peripheral collisions should play a much big-
ger role in σT than in σL for DIS since the large b plays a
much more significant role (cf. Fig. 12).

To demonstrate that our analysis is rather general and
almost model independent it is useful to rewrite the equa-
tions of the dipole model in a form which accounts for the
blackness of interaction for b2 > b20, i.e. to evaluate the
black limit of cross section:

σtot(γ∗
L,T + p→ X)

=
∫
dzd2b σ̂(z, x, b2)|ψL,T

γ (z, b,Q2)|2

= 2πr2N

∫
dzd2b|ψL,T

γ (z, b,Q2)|2

−
∫
dzd2b[2πr2N − σ̂(z, x, b2)]|ψL,T

γ (z, b,Q)|2θ(b20 − b2)

+
∫
dzd2b σ̂peripheral(z, x, b2)|ψL,T

γ (z, b,Q2)|2 . (26)

The first term in the last expression is relevant for cen-
tral collisions and assumes blackness for all dipole sizes4:
σ(z, x, b2) = 2πr2N (including inelastic and elastic contri-
butions). Alternatively, this black limit of Gribov [12] may
be expressed in terms of the structure functions

FT =
2πr2N
12π3

∫ δs

0

dM2ρ(M2)M2Q2

(M2 +Q2)2

4 It is unclear whether the hard amplitude actually achieves
the black limit or if the increase of the perturbative QCD am-
plitude with energy is tamed earlier. Either case leads to the
unitarity limit for collisions at central impact parameters

FL =
2πr2N
12π3

∫ δs

0

dM2Q4ρ(M2)
(M2 +Q2)2

. (27)

As we mentioned in the introduction (cf. (1)) the integral
over the mass, M2, of the intermediate state leads to a
logarithm in energy, or equivalently in δ/x:

F2 =
2πr2NQ

2ρ

12π3 ln(δ/x) . (28)

This estimate is rather close to that obtained within the
BFKL approximation ([13] and references therein) which
we don’t explore in this paper. Based on the equations for
the black limit suggested in this paper, which account for
the characteristic suppression of the interaction for suffi-
ciently small configurations we may identify δ as the crit-
ical scale xcrit =M2/s at which unitarity corrections be-
come necessary for a given s and M2. An analysis of the
black limit in QCD, to be published in a separate paper,
shows that for fixed Q2 δ decreases as x increases, leading
to a reduction of the coefficient of ln(1/x) by a factor of
2−4 from one for a fixed δ (depending on Q2). The size of
this reduction depends on the rate of increase of xg(x,Q2)
with decreasing x and increasing Q2.

For Q2 of a few GeV2, x ∼ 10−5 using our estimates of
the kinematic range in which unitarity effects may become
important we find for δ: 10−3 < δ ∼ xcrit < 10−4. This
allows us to estimate the numerical values of F2 for which
black limit corrections will be important. ForQ2 = 1GeV2

x ≈ 10−5, and taking a reasonable constant ρ ≈ 2.5, one
obtains Fblack2 ≈ 1.5−3. This estimate is only a factor of
about three bigger than the current HERA measurements.

The second term in (26) corrects for the fact that for
small b < b0 this black limit will not yet have been reached,
at the x value concerned. This is completely general and
does not require a detailed knowledge of the wavefunc-
tion of the photon in the large b2 region. A hypothesis
on the blackening of the interaction permits a calculation
of the structure functions at very small x which otherwise
can not be evaluated within the existing methods of QCD.
The second term accounts for the details of QCD phenom-
ena: because of colour screening phenomenon and asymp-
totic freedom, which are built into the QCD expression for
small dipoles (cf. (4)), the Gribov unitarity limit can not
be achieved for all configurations in the wave function of
a photon. At any particular x, there will exist configura-
tions whose interaction is far from the black limit. So, to
evaluate this term it is necessary to make some additional
assumptions concerning how the black limit is reached in
practice. This introduces some model dependence. For ex-
ample, one may choose to use our ansatz for σ(z, x, b2)
with its specific assumption of a smooth interpolation of
it to unitarity limit.

The third term of (26) concerns peripheral collisions
which will dominate for any initial configuration in the
photon wavefunction at extremely small x, due to Gribov
diffusion in the parton ladder. The reason for this asymp-
totic dominance is that for a particular transverse size
central collisions will freeze at their black limit, whereas
peripheral collisions can continue to grow (albeit slowly)
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with energy. For example, for a Donnachie-Landshoff soft
Pomeron parameterization [27] they would continue to
grow like σperipheral ∝ (s/sblack)

ε.
In this paper we have not tried to elaborate in detail

the behaviour of the structure functions in the kinematics
where the increase with energy of the perturbative QCD
amplitude is slowed down (i.e. where the dipole-nucleon
cross section is not far from unitarity limit). In such a
kinematic region a dipole of given transverse size b2 ex-
pands with decrease of x to a soft hadronic scale leading
to a switch from the perturbative QCD unitarity regime
to the soft QCD regime. A distinctive feature of such a
scenario will be a fast increase with energy of the slope of
the t-dependence of hard exclusive processes.

A similar analysis of the black limit also applies to
exclusive process such as diffractive photoproduction and
electroproduction of J/ψ. In this case, the black limit ap-
plies to the forward scattering amplitude:

A(γ∗ + P → J/ψ + P, t = 0)
is

= 2πr2N

∫
dzd2b ψγ(z, b2, Q2)ψJ/ψ(z, b2) . (29)

One can then further refine this, at a given x, by breaking
the amplitude down into black, not-yet black and periph-
eral contributions in direct analogy with the decomposi-
tion for total cross sections in (26). It follows from this
formulae that within the black limit approximation the
cross sections of exclusive processes at central impact pa-
rameters should not depend on energy. The difference from
the structure functions case is because the wavefunction of
vector meson suppresses the contribution of small trans-
verse sizes. However, a residual, relatively slow, increase
of amplitude with energy is expected due to contributions
from peripheral collisions neglected in the above formu-
lae. Since the analysis of quark Fermi motion effects [4,5]
revealed that J/ψ photoproduction is dominated by rela-
tively large b, where the unitarity corrections set in early,
this is an excellent process in which to search for the onset
of the black limit.

Finally, proximity to Gribov’s black body limit has
important implications for diffraction, which in this limit
is equivalent to elastic scattering of quark-gluon configu-
rations in the photon wave function and contributes half
of the total cross section (recall that in the black limit
σel = σinel = σtot/2). Since all component states in the
photon have the same cross section non-diagonal transi-
tions in M2 are absent. We can therefore unfold the M2-
integral in (27) and divide by two to get to the diffractive
mass spectrum:

dF
D(2)
T (x,Q2)
dM2 =

πr2target
12π3

Q2M2ρ(M2)
(M2 +Q2)2

(30)

Hence for M2 � Q2 one obtains an expression similar
to the triple Pomeron limit with αIP (0) = 1. The contri-
bution from scattering at peripheral impact parameters,
neglected in the black body scenario, would correspond
to αIP (0) ≥ 1. The distinctive feature of the final state

is that the average transverse momenta are ∝ M/2. Let
us assume that the black body limit is reached in nature,
for example in DIS off heavy nuclei. Since it should be
reached at lower energies for large dipoles, the diffractive
production of small masses (M ≈ few GeV) may serve as
an early signal for the onset of the Gribov regime. Thus,
for a given Q2 (30) will be valid up to M2 ∼ Q2

sat so that
decreasing x expands the region of applicability of this
equation.

Note also, as we have argued in [10], that the current
diffractive parton density analyses of the HERA diffractive
data (see e.g [47]) indicate that gluon induced diffraction
at HERA energies maybe already be close to this satura-
tion limit. Unfortunately the lack of measurements of the
t-slope of the diffractive amplitude around Q2 ∼ 4 − 6
GeV2 in gluon induced channels precludes distinguish-
ing between two competing scenarios. Either small sized
colour octet dipoles with σeff ∼ 30-40 mb dominate (ex-
pected B ∼ BJ/ψ ≈ 4.5 GeV−2, α

′ � α
′
soft, αIP −1 ≈ 0.2)

or large colour-triplet dipole with with σeff ∼ 50-60 mb
dominate (expected B ∼ Binclusive ≈ 7 GeV−2, α

′ ∼
α

′
soft, αIP − 1 ≈ αsoft). The first scenario naturally leads

to a behaviour analogous to (30) for the gluon channel for
scattering off nuclei. We will consider these phenomena
elsewhere.

7 Conclusions

We have proposed a physically motivated ansatz for the
dipole cross section (DCS) relevant to a wide range of
small x scattering processes. The small dipole cross sec-
tion is governed by the leading log gluon density at small
x. Using this and the measured pion-proton cross sec-
tion as a guide, we construct an ansatz for it in the non-
perturbative region, below the input scale at which the
input density for the gluon is defined. At very small val-
ues of x, as a result of the large and steeply rising gluon
density, the DCS threatens to become larger at small per-
turbative b than the pion-proton cross section, in conflict
with unitarity. To prevent this from happening we tame
the rapid growth using a smooth ansatz that ensures a
monotonically increasing function of b at fixed x.

The resultant DCS produces values for FL(x,Q2)
which are in good agreement with those from perturba-
tive QCD in the large Q2 and the high end of the small x
region, where it would be expected to. Our DCS compares
reasonably well with all available small x data on F2 from
HERA, without any further tuning of parameters. Inter-
estingly, in the moderate Q2 region a significant fraction of
the cross section appears to be coming from the region of
large non-perturbative dipoles. If the perturbative unitar-
ity corrections are neglected our model would continue to
grow very steeply in the very small x region. More detailed
studies of the choices that we make for the precise form
of the ansatz are being carried out and will be reported
in a separate paper [20]. Although these clearly affect the
results quantitatively to a certain extent, we are confident
of the qualitative conclusion of the paper that unitarity
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corrections must set in within or near to the HERA kine-
matic region of small x and moderate Q2 (we estimate
that the Q2 < 10 GeV2 will be affected at the smallest
attainable values of x). This calls into question the use
of the low, and x-independent, input scales used in the
standard DGLAP fits [7,25,48,49] (Q2

0 ≈ 0.8−2.6 GeV2).
In Sect. 6 we generalized Gribov’s black limit to the

perturbative QCD analysis of DIS to make it compatible
with the applicability of the DGLAP approximation at
sufficiently large Q2 but fixed x and with the dominance
of peripheral collisions at fixed Q2 at extremely high en-
ergies. We estimate that this black limit is close to the
lower edge of the HERA kinematic region in x for Q2 = 1
GeV2. We suggest that certain diffractive processes may
acts as earlier indicators of the onset of this new regime.
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